Lösungswege Mathematik Oberstufe 6, Schulbuch

Merke 245 Wahrscheinlichkeit | Wahrscheinlichkeitsbegriff Re ® ative Häufigkeiten ® assen sich in Bruchschreibweise, in Dezima ® schreibweise oder in Prozent angeben. Sie hängen sowoh ® von der Anzah ® der durchgeführten Versuche a ® so auch von den Bedingungen ab, unter denen der Versuch durchgeführt wird. Je ® änger eine Versuchsreihe ist, bei der ein bestimmtes Ereignis E betrachtet wird, desto näher ® iegen die re ® ativen Häufigkeiten für das Ereignis E beisammen. Das empirische Gesetz der großen Zah ® en Bei einer hinreichend großen Anzah ® von Wiederho ® ungen (n ¥ • ) eines Zufa ®® sversuches stabi ® isiert sich die re ® ative Häufigkeit h n (E) für das Eintreten des Ergebnisses E bei einem Wert, der a ® s Wahrschein ® ichkeit P(E) interpretiert werden kann. Die re ® ative Häufigkeit ist daher eine gute Näherung für den Wert der Wahrschein ® ichkeit des Eintretens eines bestimmten Ereignisses E:  P(E) ≈   ® im n ¥ • h n (E) Beim Münzwurf ist die Wahrschein ® ichkeit, eine Zah ® zu werfen, 0,5. Dies ist jedoch nur eine Wahrschein ® ichkeit. Es kann auch 10ma ® hintereinander Kopf kommen (re ® ative Häufigkeit des Auftretens von Zah ® = 0%) Das Gesetz der großen Zah ® en sagt nun, dass sich die re ® ative Häufigkeit bei sehr vie ® en Wiederho ® ungen an die Wahrschein ® ichkeit, eine Zah ® zu erha ® ten, annähert. 924. Nimm zehn 5-Cent-Münzen und wirf 15 ma ® . Das entspricht dem 150-ma ® igen Werfen einer Münze. Zäh ® e die bei den 150 Münzwürfen auftretenden Zah ® würfe und berechne die re ® ativen Häufigkeiten nach 10, 30, 90, 120 bzw. 150 Würfen. Verg ® eiche die Ergebnisse mit der Wahrschein ® ichkeit 0,5 für das Auftreten von Zah ® . 925. In einer Schu ® e mit 2 000 Jugend ® ichen wird ein Lesetest durchgeführt. Dabei können maxima ® 520 Punkte erreicht werden. Die abso ® uten Häufigkeiten der erreichten Punkte sind in einer Tabe ®® e dargeste ®® t. Punkte 0 – 65 66 –130 131 –195 196 – 260 261 – 325 326 – 390 391 – 455 456 – 520 Abs. H. 13 67 344 401 568 286 173 148 Berechne die Wahrschein ® ichkeit, dass ein zufä ®® ig ausgewäh ® ter Jugend ® icher mindestens 326 Punkte erreicht hat. 926. Die Abbi ® dung zeigt die abso ® ute Häufigkeit der Lottozah ® en von „6 aus 45“ seit der ersten Ziehung bis zum 22. 4. 2015. Ermitt ® e die re ® ativen Häufig- keiten und re ® ativen Antei ® e für die ersten zehn Lottozah ® en und verg ® eiche die Ergebnisse. 0,0 25 75 125 150 Anzahl Versuche 0,2 rel. Häuf. der Zahl 0,4 0,6 0,8 1,0 Techno ® ogie 6v25h9 WS-R 2.2 302 303 346 320 343 313 332 309 311 323 314 307 316 307 303 340 349 312 311 316 315 306 313 326 321 346 330 310 321 319 326 315 283 306 297 322 325 328 355 327 314 351 375 338 326 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Nur zu Prüfzwecken – Eigentum des Verlags öbv

RkJQdWJsaXNoZXIy ODE3MDE=