Schritt für Schritt Mathematik 4, Schulbuch

Starten Lernen Verbinden Zusammenfassen Überprüfen Lineare Gleichungssysteme 7 2 Lineare Gleichungssysteme − grafische Lösung Bestimme jeweils k und d und zeichne die beiden gegebenen linearen Gleichungen in ein Koordinatensystem. a) I: y = 2x − 3 II: y = − 3 _ 2 x + 4 k = k = d = d = Ergänze: Die beiden Geraden schneiden einander in Punkt. Dieser ist die Lösung des Gleichungssystems. b) I: y = − 1 _ 2 x − 1 II: y = − 1 _ 2 x + 3 k = k = d = d = Ergänze: Die beiden Geraden schneiden einander in Punkt. Sie sind . Es gibt Lösung des Gleichungssystems. c) f 1 : y = 1 _ 2 x + 2 f 2 : y = 2 _ 4 x + 2 k = k = d = d = Ergänze: Die beiden Geraden schneiden einander in Punkten. Sie sind . Es gibt Lösung. d) Erkennt man den Lösungsfall schon an den gegebenen Gleichungen? Begründe. 686 I2, H2, K1 Grafisches Lösen von linearen Gleichungssystemen mit zwei Variablen Zwei oder mehrere lineare Gleichungen, die „zusammengehören“ und die gleiche Lösung haben, werden als lineares Gleichungssystem bezeichnet. z. B.: I: a 1 · x + b 1 · y = c 1 II: a 2 · x + b 2 · y = c 2 I: 2x + 3y = 25 II: x + y = 11 Um Gleichungssysteme lösen zu können, braucht man so viele Gleichungen, wie Variablen vorkommen. Zeichnet man beide Funktionen in ein Koordinatensystem, kann man die Lösung des Gleichungssystems aus der Graphik ablesen. f 1 f 2 S f 1 f 2 f 1 = f 2 schneidende Geraden ein gemeinsamer Punkt eindeutige Lösung: L = {(x | y)} parallele Geraden kein gemeinsamer Punkt keine Lösung: L = { } identische Geraden unendlich viele gemeinsame Punkte unendlich viele Lösungen: L = D 138 M Arbeitsheft Seite 63 Ó Arbeitsblatt 7u83r4 Ó Film t9u54p Nur a zu Prüfzwecken – Eigentum des Verlags öbv

RkJQdWJsaXNoZXIy ODE3MDE=