Mathematische Formelsammlung
        
 11.8 Numerische Integration a = x 0 < x 1 < x 2 < … < x n – 1 < x n = b; x i – x i – 1 =   b – a __ n  = ∆ x für i = 1, 2, 3, …, n Rechtecksformel  :  a   b  f(x)dx ≈   b – a _ n   [ f(x 0 ) + f(x 1 ) + f(x 2 ) + … + f(x n – 1 ) ] = = ∆ x ·  ;  i = 0   n – 1  f(x i ) Trapezformel  :  a   b  f(x)dx ≈   b – a _ 2n   [ f(x 0 ) + 2 f(x 1 ) + 2 f(x 2 ) + … +       + 2 f(x n – 1 ) + f(x n ) ]  Regel von Simpson a = x 0 < x 1 < x 2 < … < x 2n – 1 < x 2n = b; x i – x i – 1 =   b – a __ 2n für i = 1, 2, 3, …, 2n  :  a   b  f(x)dx ≈   b – a _ 6n  {  f(x 0 ) + f(x 2n ) + 2  [ f(x 2 ) + f(x 4 ) + f(x 6 ) +           + … + f(x 2n – 2 ) ] + 4     [ f(x 1 ) + f(x 3 ) + f(x 5 ) + … + f(x 2n – 1 ) ]  }  Regel von Kepler (Fassregel)  :  a   b  f(x)dx ≈   b – a _ 6  [ f(a) + 4f  (    a + b _ 2   ) + f(b) ]  x 0 f b a x y ∆ x 0 f b a y x 0 f b a y x 0 f b a a+b 2 y Differential- und Integralrechnung 29 Nur zu Prüfzwecken – Eigentum des Verlags öbv
        
         Made with FlippingBook 
RkJQdWJsaXNoZXIy ODE3MDE=