Lösungswege 5

AG-R 3.4 AG-R 3.4 AG-R AG-R AG-R AG-R 13.4 Lagebeziehungen zweier Geraden in der allgemeinen Form 377 Gegeben ist das Viereck ABCD mit A = (‒1 1 ‒1), B = (8 1 ‒1), C = (7 1 4) und D = (1 1 4). 1) Stelle die Trägergeraden der Diagonalen des Vierecks in Normalvektorform dar. 2) Schneide die Trägergeraden der Diagonalen und bestimme den Schnittpunkt. 378 Bestimme die Parameter a, b so, dass die beiden Geraden (1) ident (2) parallel (3) schneidend sind. a) 2 x – 3 y = – 6 (1) a = b = (2) a = b = a x + 9 y = b (3) a = b = b) 6 x – 18 y = – 9 (1) a = b = (2) a = b = a x + b y = 3 (3) a = b = 13.5 Anwendungen Abstand eines Punktes zu einer Geraden 379 Berechne den Abstand der Geraden g: X = ​2 ​ 2 ‒ 1 ​3 ​+ t · ​2 ​ 2 4 ​3​zum Punkt R = (6 1 2). 380 Gegeben ist die Gerade g: 2 x – 3 y = 4. a) 1) Stelle eine Gerade h in allgemeiner Form auf, die auf g normal steht und durch den Punkt P = (‒ 5 1 4) geht. h: a) 2) Schneide die Gerade h mit g. Welchen Schnittpunkt haben die beiden Geraden?  (‒ 4 1 ‒ 3)  (‒ 5 1 4)  (‒ 4 1 3)  (‒ 1 1 ‒ 2) a) 3) Berechne den Abstand von P zu g. Merkwürdige Punkte im Dreieck 381 Gegeben ist das Dreieck ABC. 1) Stelle die Euler’sche Gerade durch die beiden Punkte H und U auf. 2) Zeige, dass der Punkt R = ​2 ​​ 4 _ 3 ​1 ​ 5 _ 3 ​3​auf dieser Geraden liegt. 3) Begründe, dass der Punkt R auf der Euler’schen Geraden liegen muss. M2 M2 3.4 3.4 3.4 3.4 x y 1 2 3 4 5 6 7 8 9 –7 –6 –5 –4 –3 –2 –1 1 2 3 4 5 –3 –2 –1 0 A a b c B C H U ma mc hc ha hb mb 92 Geraden 13 Nur zu Prüfzwecken – Eigentum des Verlags öbv

RkJQdWJsaXNoZXIy MTA2NTcyMQ==