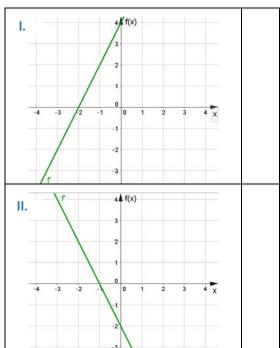
Ich kann Eigenschaften von Funktionen, insbesondere Monotonie- und Krümmungsverhalten mithilfe der Ableitungsfunktion erklären und berechnen.

- ^c 1 Von einer Funktion f ist der Graph der ersten Ableitungsfunktion gegeben.
 - a. Ordne jeder Ableitungsfunktion f' den passenden Hochpunkt (H) bzw. Tiefpunkt (T) der Funktion f zu.
 - b. Beschreibe das Monotonieverhalten von f für I. und II. Begründe deine Antwort.
 - c. Beschreibe das Krümmungsverhalten von f für I. und II. Begründe deine Antwort.



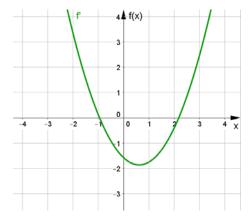
Α	H(-2 f(-2))	
В	T (-2 f(-2))	
С	H (-1 f(-1))	
D	T (-1 f(-1))	

B, C 2 Ordne den angegebenen Funktionen f die passenden Hochpunkte (H) bzw. Tiefpunkte (T) zu.

$f(x) = -x^2 + 2x + 4$	
$f(x) = x^2 - 2x + 6$	

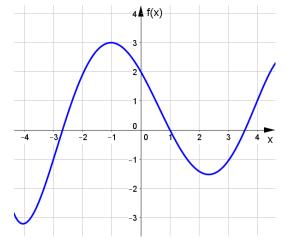
Α	T (1 5)
В	H(1 5)
С	H(-1 5)
D	T (-1 -5)

Im Diagramm ist der Graph der Ableitungsfunktion f' einer Funktion f dargestellt. Beschreibe anhand des Graphen das Montonieverhalten der Funktion f.



Ich kann Eigenschaften von Funktionen, insbesondere Monotonie- und Krümmungsverhalten mithilfe der Ableitungsfunktion erklären und berechnen.

- a. Markiere im Diagramm die lokalen Extrempunkte der dargestellten Funktion.
 - **b.** Beschreibe das Monotonieverhalten der Funktion f im Intervall [-4; 3]. Gib dabei an, welche Werte die erste Ableitung in den einzelnen Bereichen annimmt.
 - **c.** Markiere im nebenstehenden Diagramm jene Stellen im Intervall [-4; 3], an denen sich das Krümmungsverhalten der Funktion ändert.
 - d. Gib die Bereiche an, in denen die Funktion linksgekrümmt ist.



B, C 5 Ordne jeder Funktion die passende Aussage bezüglich ihrer Wendepunkte zu.

$f(x) = \frac{1}{3}x^3 - 2x^2 + 5$	
$f(x) = \frac{3}{x^2} - x + 4$	

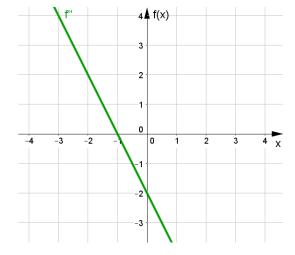
Α	hat keinen Wendepunkt.
В	hat den Wendepunkt $W(-1 2)$.
С	hat einen Wendepunkt an der Stelle 2.
D	hat zwei Wendepunkte.

B, C 6 Ordne den angegebenen Funktionen f die passenden Wendepunkte zu.

$f(x) = \frac{5}{6}x^3 + \frac{1}{2}x^2 + x + \frac{19}{100}$	
$f(x) = -x^3 + 6x^2 + 2x - 20$	

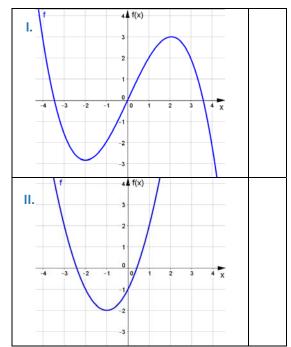
	1 -
Α	W(2 0)
В	W (-0,2 1)
С	W (2,1 1,4)
D	W (-0,2 0)

- 7 Von einer Funktion f ist der Graph der zweiten Ableitungsfunktion im nebenstehenden Diagramm dargestellt.
 - a. Bestimme die Wendestelle der Funktion f.
 - **b.** Beschreibe das Krümmungsverhalten der Funktion f. Begründe deine Antwort mithilfe der zweiten Ableitung.



Ich kann Eigenschaften von Funktionen, insbesondere Monotonie- und Krümmungsverhalten mithilfe der Ableitungsfunktion erklären und berechnen.

- 8 a. Ordne jeder Abbildung der Funktion f die passende Aussage über die Wendestelle(n) von f zu.
 - b. Beschreibe das Krümmungsverhalten von f für I. und II.



Α	Wendestelle bei x = -1
В	Wendestelle bei x = 0
С	hat keine Wendestellen
D	2 Wendestellen: $x_1 = -2$, $x_2 = 2$

Beschreibe das Monotonie- und das Krümmungsverhalten der Funktion f. Verwende gegebenenfalls eine geeignete Technologie.

a.
$$f(x) = \frac{x}{x^2 - 2}$$

b.
$$f(x) = -x^3 - 3x^2 + x + 3$$

c.
$$f(x) = 0.25x^4 - x^3 + 2$$

Lösungen zu:

Ich kann Eigenschaften von Funktionen, insbesondere Monotonie- und Krümmungsverhalten mithilfe der Ableitungsfunktionen erklären und berechnen.

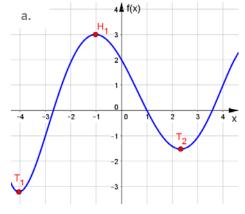
1 a. I. B; II. C

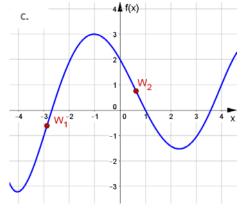
- **b. I.** Die Funktion f ist im Intervall $(-\infty, -2)$ streng monoton fallend, da hier f'<0 ist. Im Intervall $(-2, \infty)$ ist die Funktion f streng monoton wachsend, da hier f'>0 ist.
- II. Die Funktion f ist im Intervall $(-\infty, -1)$ streng monoton wachsend, da hier die erste Ableitung positiv ist. Im Intervall $(-2, \infty)$ ist f streng monoton fallend, da die erste Ableitung negativ ist.
- **c. l.** Die Funktion f ist linksgekrümmt, da die Steigung von f' positiv ist. [Die Steigung von f' entspricht genau der 2. Ableitung von f.]
- II. Die Funktion f ist rechtsgekrümmt, da die Steigung von f' negativ ist. [Die Steigung von f' entspricht genau der 2. Ableitung von f.]

2

$f(x) = -x^2 + 2x + 4$	В
$f(x) = x^2 - 2x + 6$	A

- Die Funktion f besitzt an den Stellen x = -1 und x = 2 Extremstellen. Da f'(x) > 0 für alle x < -1, ist die Funktion f auf $(-\infty, -1)$ streng monoton wachsend. Zwischen -1 und 2 gilt f'(x) < 0, daher ist die Funktion f auf (-1, 2) streng monoton fallend. Für alle x > 2 ist f'(x) > 0, daher ist die Funktion auf $(2, \infty)$ wieder streng monoton wachsend.
- **4** b. Die Funktion ist in den Intervallen (-4, -1) und (2,3,3) streng monoton wachsend. Die erste Ableitung ist hier positiv. Im Intervall (-1, 2,3) ist die Funktion streng monoton fallend. Die erste Ableitung ist hier negativ.
 - c. Die Funktion verändert ihr Krümmungsverhalten an den Punkten $W_1 = (x_1 | y_1)$ und $W_2 = (x_2 | y_2)$.
 - **b.** Die Funktion ist linksgekrümmt in den Bereichen $(-\infty; x_1)$ und $(x_2; \infty)$. $[x_1 \approx -2.9; x_2 \approx 0.6]$





5

$f(x) = \frac{1}{3}x^3 - 2x^2 + 5$	С
$f(x) = \frac{3}{x^2} - x + 4$	А

Lösungen zu:

Ich kann Eigenschaften von Funktionen, insbesondere Monotonie- und Krümmungsverhalten mithilfe der Ableitungsfunktionen erklären und berechnen.

6

$f(x) = \frac{5}{6}x^3 + \frac{1}{2}x^2 + x + \frac{19}{100}$	D
$f(x) = -x^3 + 6x^2 + 2x - 20$	Α

7 a. Wendestelle von f: x = 1

b. Die zweite Ableitung f"(x) ist im Intervall $(-\infty; -1)$ positiv. Daher ist die Funktion f in diesem Intervall linksgekrümmt. Im Intervall $(-1; \infty)$ ist die zweite Ableitung negativ und die Funktion f daher rechtsgekrümmt.

8 a. I. B; II. C

- **b. I.** Die Funktion f ist im Intervall $(-\infty; 0)$ linksgekrümmt und im Intervall $(0; \infty)$ rechtgekrümmt. An der Stelle x = 0 hat f einen Wendepunkt.
- II. Die Funktion ist auf dem gesamten Definitionsbereich linksgekrümmt.
- **9** a. *Monotonie*: Die Funktion f ist auf ihrem gesamten Definitionsbereich streng monoton fallend. *Krümmung*: Die Funktion f ist in den Intervallen $(-\infty; \sqrt{2})$ und $(0; -\sqrt{2})$ rechtsgekrümmt und in den Intervallen $(-\sqrt{2}; 0)$ und $(\sqrt{2}; \infty)$ linksgekrümmt. An der Stelle x = 0 hat f einen Wendepunkt.
 - **b.** *Monotonie*: Die Funktion f ist in den Intervallen $(-\infty; -2,15)$ und $(0,15; \infty)$ streng monoton fallend und im Intervall (-2,15; 0,15) streng monoton wachsend. Die lokalen Extrempunkte sind der Tiefpunkt T(-2,15|-3,08) und der Hochpunkt H(0,15|3,08).

Krümmung: Die Funktion f ist im Intervall $(-\infty; -1)$ linksgekrümmt und im Intervall $(-1; \infty)$ rechtsgekrümmt. An der Stelle x = -1 hat die Funktion einen Wendepunkt.

c. *Monotonie*: Die Funktion f ist im Intervall $(-\infty; 3)$ streng monoton fallend und im Intervall $(3; \infty)$ streng monoton wachsend. Der lokale Extrempunkt ist der Tiefpunkt T(3|-4,75).

Krümmung: Die Funktion ist in den Intervallen $(-\infty; 0)$ und $(2; \infty)$ linksgekrümmt und im Intervall (-0; 2) rechtsgekrümmt. Die Funktion f hat zwei Wendestellen: $x_1 = 0$ und $x_2 = 2$.

