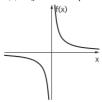
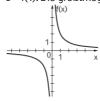
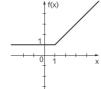

8 NICHTLINEARE FUNKTIONEN

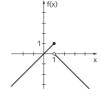
W 8.01	Was lässt sich über den Graphen der Funktion f mit $f(x) = x^2$ aussagen? Skizziere den Graphen von f!
W 8.02	Was lässt sich über den Graphen der Funktion f mit $f(x) = ax^2 + bx + c$ (mit a, b, $c \in \mathbb{R}$ und $a \neq 0$) aussagen?
W 8.03	Wie sieht eine Termdarstellung (Funktionsgleichung) einer indirekten Proportionalitätsfunktion aus? Was lässt sich über den Graphen einer solchen Funktion aussagen?
W 8.04	Was bedeutet die Zahl c in der Funktion f mit $f(x) = \frac{c}{x}$? Gib die größtmögliche Definitionsmenge von f an und skizziere den Graphen von f für $c = 2!$
W 8.05	Unter welchen Voraussetzungen sind die Funktionswerte indirekt proportional zu den Argumenten? Gib ein Beispiel für indirekte Proportionalität an!
W 8.06	Begründe, dass man bei einer indirekten Proportionalitätsfunktion Folgendes aussagen kann: Die Funktionswerte und die Argumente sind zueinander indirekt proportional.
W 8.07	Gib ein Beispiel einer abschnittsweise definierten Funktion an und zeichne deren Graphen! Wie lautet der größtmögliche Definitionsbereich einer solchen Funktion?
W 8.08	Gib ein Beispiel einer Sprungfunktion an und zeichne deren Graphen! Wie lautet der größtmögliche Definitionsbereich einer solchen Funktion?
W 8.09	Skizziere die Graphen der Funktionen f mit $f(x) = \frac{1}{x}$, g mit $g(x) = x^2$, h mit $h(x) = \frac{1}{x^2}$ und p mit $p(x) = x $ aus dem Gedächtnis, dh. ohne Technologieeinsatz und ohne dabei einzelne Werte zu berechnen!

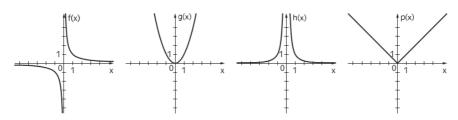

8 NICHTLINEARE FUNKTIONEN

Lösungen


W 8.01 Hierbei handelt es sich um eine nach oben offene Parabel mit dem Scheitel im Ursprung O = (0 | 0).


- W 8.02 Hierbei handelt es sich um eine Parabel mit dem Scheitel $S = \left(-\frac{b}{2a}\right| f\left(-\frac{b}{2a}\right) = \left(-\frac{b^2}{2a}\right| c \frac{b^2}{4a}\right)$. Sie ist nach oben offen für a > 0, nach
- W 8.03 $f(x) = \frac{c}{x}$. Der Graph ist keine Gerade und sieht ungefähr so aus:


W 8.04 c = f(1). Die größtmögliche Definitionsmenge ist \mathbb{R}^* .


- W 8.05 Die Funktionswerte sind zu den Argumenten indirekt proportional, wenn $f(x) = \frac{c}{x}$ (mit $c \neq 0$) gilt. Beispiel: Die Fliehkraft ist indirekt proportional zum Radius (bei konstanter Geschwindigkeit).
- W 8.06 Aus $f(x) = \frac{c}{x}$ folgt $x = \frac{c}{f(x)}$. Dh. die Funktionswerte sind zu den Argumenten indirekt proportional und umgekehrt.
- W 8.07 ZB: Funktion f mit $f(x) = \begin{cases} 1 & \text{für } x \leq 1 \\ x & \text{für } x > 1 \end{cases}$
- größtmöglicher Definitionsbereich: ${\mathbb R}$

- W 8.08 ZB: Funktion f mit $f(x) = \begin{cases} x & \text{für } x \leq 1 \\ -x+1 & \text{für } x > 1 \end{cases}$
- größtmöglicher Definitionsbereich: ${\mathbb R}$

W 8.09

