
03. Juli 2025

Regenerationsforscherin Elly Tanaka erhält "Austro-Nobelpreis"

Der heuer mit 1,9 Millionen Euro dotierte Wittgenstein-Preis geht an die Biochemikerin Elly Tanaka. Die 59-jährige Forscherin vom Institut für Molekulare Biotechnologie (IMBA) der Akademie der Wissenschaften (ÖAW) gilt als Pionierin der Regenerationsforschung, die sie vor allem mit dem Axolotl, einem Regenerationskünstler, vorantrieb. Den "Austro-Nobelpreis", die vom Wissenschaftsfonds FWF vergebene höchstdotierte Auszeichnung des Landes, erhielt sie Mittwochabend in Wien.

Die wissenschaftliche Leiterin des IMBA bekommt den an exzellente Forschende gerichteten Preis "für ihre bahnbrechenden Beiträge zum Verständnis der Regeneration

von Geweben", begründete die internationale Jury die Vergabe. Tanaka habe "zu einer Zeit, als diese Prozesse als zu komplex für eine molekulare Analyse galten", genetische und bildgebende Verfahren auf den Axolotl angewandt. Sie habe zudem als Erste begonnen, "Rückschlüsse für die fehlende Regeneration in anderen Organismen zu ziehen". Die Auszeichnung wird vom Wissenschaftsministerium finanziert. Erstmals verlieh der FWF auch die neuen ASTRA-Preise an 18 fortgeschrittene Postdocs.

"Unglaubliche" Möglichkeiten des Axolotis

Schon früh faszinierten die in den USA geborene Biochemikerin die "unglaublichen" Möglichkeiten des Axolotls, etwa neue Gliedmaßen oder gar Teile des Gehirns bilden zu können. "Die Regenerationsfähigkeiten des Axolotls waren bereits seit dem 19. Jahrhundert bekannt. Aber als die molekulare Biologie ab den 1950er-Jahren aufkam, galt Regeneration als zu komplex, um sie auf molekularer Ebene zu untersuchen", sagte Tanaka gegenüber der APA. Die Forscherin und ihr Team trugen durch die Anpassung von molekularbiologischen Techniken auf den Axolotl maßgeblich bei, den Organismus wieder ins Zentrum wissenschaftlicher Forschung zu rücken. Der Preis zeichne auch den Mut ihrer Mitstreiter aus, die sich mit ihr auf diesen "faszinierenden, aber sehr schwierigen" Weg begeben haben, so die Forscherin.

Heute hält Tanaka mit etwa 3.000 Exemplaren von "*Ambystoma mexicanum*" eine der größten Axolotl-Kolonien weltweit: "Der Wildtyp ist eigentlich grün oder schwarz. Für die Beobachtung des Zellenwachstums ist aber für uns eine fehlende Pigmentierung hilfreich." Ihr heutiger Schatz von etwa 240 genetisch veränderten und großteils nicht-pigmentierten Tierlinien unterstreicht auch ihre Bedeutung für die Regenerationsforschung und die internationale Relevanz ihres Labors als wissenschaftliche Anlaufstelle.

Grundlagen für Regeneration erkundet

Mit Kolleginnen und Kollegen gelang es Tanaka etwa, das im Vergleich zum Menschen zehnmal größere Erbgut des im Wasser lebenden mexikanischen Schwanzlurchs zu sequenzieren, die molekularen Grundlagen für seine Regeneration von Gliedmaßen und Rückenmark zu erkunden und die Nervenbildung im Zusammenhang mit Regeneration zu verstehen. Erst Anfang des Jahres zeigte sie im Fachjournal "Nature", wie beim Axolotl an der richtigen Stelle wieder die richtige Struktur entsteht: Sie entschlüsselte mit ihrem Team quasi das Positionsgedächtnis von Zellen nachwachsender Gliedmaßen - und konnte dieses "Gedächtnis" auch ändern.

Besonders in Erinnerung geblieben in der Reihe der aufsehenerregenden Entdeckungen sind Tanaka ihre Erkenntnisse rund um das Nachwachsen von Gliedmaßen: "Es war total toll zu sehen, wie bei der Regeneration - aus einer Reihe von verschiedenen Molekülen - vor allem einzelne Moleküle genau vorgeben, wo ein Glied nachwachsen soll. Das ist noch heute absolut faszinierend."

Impulse für regenerative Medizin

"Das, was wir aus der Regenerationsforschung an dem Amphibium mitnehmen, wollen wir nutzen und Faktoren identifizieren, die helfen könnten, dass sich auch Säugetierzellen regenerieren lassen - dass also entsprechende Stammzellen als Grundlage für die Regeneration gebildet werden können", so die Forscherin. So wird auch das Wittgenstein-Preisgeld in weitere Arbeiten fließen, die sich für die regenerative Medizin als nützlich erweisen könnten. Mit ihrer Gruppe arbeitet die Wissenschafterin derzeit etwa auch an der Frage, wie sich menschliche Sehzellen künftig einmal erneuern könnten: "Wir arbeiten an einem bestimmten Zelltyp der Pigmentschicht der Netzhaut, deren Abbau im Alter zu Blindheit führen kann. Wir wollen verstehen, wie wir diese Zellen retten können."

Neben der Laborarbeit agiert sie seit April 2024 auch als wissenschaftliche Direktorin des IMBA. Wie viel Zeit bleibt noch für die Laborarbeit? "Ich bin noch sehr engagiert in der Forschung in meinem Labor - ich versuche eine Arbeitsteilung von 50:50", erklärte Tanaka. Sie habe immer noch mehrere Besprechungen pro Woche mit ihrer Gruppe.

Gleichzeitig fasziniere sie die strategische Arbeit und Leitung einer großen Einrichtung: Die wissenschaftliche Ausrichtung des Institutes, aber auch die Förderung der jungen Forschenden in ihrer wissenschaftlichen Karriere sei ebenso zentral und mache Spaß.

Tierischer Star für Wissenschaftskommunikation hilfreich

Aber auch der Wissenschaftskommunikation fühlt sich Tanaka verpflichtet. Hier hilft natürlich, dass schon allein ihr tierischer Star im Labor viel Interesse und Neugier auslöst: "Regeneration ist ein Problem, von dem jeder fasziniert ist. Und wir wollen so auch künftig verstärkt hinausgehen und mit Schülerinnen und Schülern verschiedenen Alters in Kontakt treten, um ihnen über unsere Arbeit auch die Faszination für Wissenschaft zu vermitteln."

FWF-Präsident Christof Gattringer würdigte die Wittgenstein-Preisträgerin als "eine Pionierin der Grundlagenforschung", die seit Anbeginn ihrer Karriere "wissenschaftliches Neuland betritt und Mechanismen erforscht, die in Zukunft die Medizin revolutionieren können". ÖAW-Präsident Heinz Faßmann verwies darüber hinaus auf ihr Engagement als Wissenschaftskommunikatorin: "Ihre Forschung an den Axolotl macht sie durch ihre anschaulichen Erklärungen und das ansprechende Forschungsobjekt auch einer breiten Öffentlichkeit zugänglich." Im Rahmen ihrer Gratulationsworte unterstrich Wissenschaftsministerin Eva-Maria Holzleitner (SPÖ), Tanaka habe mit ihrer Forschung zeigen können, "wie viel Innovationskraft entsteht, wenn Frauen in Wissenschaft und Forschung die Ressourcen und die Freiheit bekommen, Großes zu leisten".

Service: Website von Tanaka: https://www.oeaw.ac.at/imba/groups/elly-tanaka; FWF-

Website: https://www.fwf.ac.at

Dieser Artikel ist online verfügbar bis: 03. Juli 2026